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Abstract— Lymph node metastasis is one of the most
important indicators in breast cancer diagnosis, that is
traditionally observed under the microscope by pathol-
ogists. In recent years, with the dramatic advance of
high-throughput scanning and deep learning technology,
automatic analysis of histology from whole-slide images
has received a wealth of interest in the field of medical
image computing, which aims to alleviate pathologists’
workload and simultaneously reduce misdiagnosis rate.
However, the automatic detection of lymph node metastases
from whole-slide images remains a key challenge because
such images are typically very large, where they can often
be multiple gigabytes in size. Also, the presence of hard
mimics may result in a large number of false positives.
In this paper, we propose a novel method with anchor layers
for model conversion, which not only leverages the effi-
ciency of fully convolutionalarchitectures to meet the speed
requirement in clinical practice but also densely scans the
whole-slide image to achieve accurate predictions on both
micro- and macro-metastases. Incorporating the strategies
of asynchronous sample prefetching and hard negative
mining, the network can be effectively trained. The efficacy
of our method is corroborated on the benchmark dataset
of 2016 Camelyon Grand Challenge. Our method achieved
significant improvements in comparison with the state-of-
the-art methods on tumor localization accuracy with a much

Manuscript received November 20, 2018; accepted January 2, 2019.
Date of publication January 7, 2019; date of current version July 31,
2019. This work was supported in part by Hong Kong Innovation and
Technology Commission under Project ITS/041/16 and ITS/426/17FP,
in part by the Hong Kong Research Grants Council under Project
14225616, and in part by (2017–2018) the University of Warwick through
the Global Partnership Fund for providing funding in collaboration with
Warwick and CUHK. (Corresponding author: Hao Chen.)

H. Lin, Q. Dou, and P. A. Heng are with the Department of Com-
puter Science and Engineering, The Chinese University of Hong Kong,
Hong Kong.

H. Chen is with Imsight Medical Technology, Co., Ltd., Shenzhen
518063, China (e-mail: hchen@cse.cuhk.edu.hk).

N. Rajpoot is with the Department of Computer Science, University of
Warwick, Coventry CV4 7AL, U.K.

S. Graham is with the Department of Computer Science, University of
Warwick, Coventry CV4 7AL, U.K., and also with the Mathematics for
Real-World Systems Centre for Doctoral Training, University of Warwick,
Coventry CV4 7AL, U.K.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2019.2891305

faster speed and even surpassed human performance on
both challenge tasks.

Index Terms— Histopathology image analysis,
computational pathology, whole-slide image, deep learning,
metastasis detection.

I. INTRODUCTION

A. Background

BREAST cancer is one of the leading causes of cancer
related death within women [1]. One of the most impor-

tant diagnostic criteria of breast cancer grading is identifying
the metastases in the sentinel lymph nodes. According to the
tumor, node and metastasis (TNM) breast cancer staging sys-
tem [2], a higher staging of the patient indicates diagnosis of
larger or more metastases, which affects therapeutic operation
afterwards.

However, the pathologic diagnosis is extremely time-
consuming, laborious and highly dependent on expertise which
requires pathologists to carefully examine the biopsies under
the microscope [3], [4]. Moreover, the population of patholo-
gists cannot meet the sharply growing demand of diagnosis,
with the cancer morbidity increasing [5]. The pathologists have
to diagnose a large number of biopsy slides everyday, thus it
is quite cumbersome, if not impossible, to conduct a thorough
inspection of the whole slide. Also, the risk of misdiagnosis
may increase if only small regions of interest are analyzed.

Over the last decade, automatic analysis of histology has
become one of most rapidly expanding fields in medical
image computing. Computer aided diagnostics can not only
alleviate pathologists’ workload, but also help to reduce the
misdiagnosis rate. The advent of high-throughput scanning
technology makes whole-slide image (WSI) analysis more
essential in digital pathology.

Metastasis detection from WSIs plays a key role in breast
cancer diagnosis. However, this task is very challenging due
to several factors: 1) the large variations of textures and
biological structures, as shown in Fig. 2(a); 2) the hard mimics
with similar morphological appearance between normal and
metastatic regions, as shown in Fig. 2(b); 3) as illustrated
in Fig. 2(c), the image appearance is easily affected by
the image acquisition process, e.g., sampling, staining and
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Fig. 1. Challenge in multi-gigapixel whole-slide image analysis. Detect-
ing micro metastasis (denoted by red circles in right figure) is just like
finding a needle in a haystack.

Fig. 2. Illustration of some key challenges for detecting tumor in the
histology images. (a) Variations of biological structures and textures.
(b) Hard mimics of tumor from normal tissues. (c) Appearance variations
due to the acquisition process.

digitalizing [6]; 4) the significant size variance between micro-
and macro-metastases, see Fig. 1. Tiny micro-metastases are
easier to be neglected compared with the macro ones. Finally,
the WSI is with size up to 200000×100000. How to efficiently
process such a gigapixel image poses further challenges to
automatic detection methods, especially in finding micro-
metastases.

B. Related Work

The early researches of histology image analysis date back
to 60s [7]. During last few decades, many works have been
proposed for breast cancer diagnosis in a variety of applica-
tions including nuclei, tubules, and mitosis, etc.

1) Region of Interest Analysis: Previously due to the lack
of whole-slide scanning techniques and computational power,
most of the literature focused on regions of interest (ROI),
e.g., image size 500 × 500, pre-selected by pathologists from
WSIs [4], [8].

In the earlier years, most of the study focused on hand-
crafted features. For nuclei detection and segmentation,
a series of level set methods equipped hand-crafted features,
such as Hough transform [9], concavity [10] and gradient [11],
etc., were proposed as a fundamental prerequisite in many
breast cancer histopathological applications. These features

were exquisitely considered with prior knowledge of boundary,
region or shape. Besides, a series of wavelet filters equipped
hand-crafted features, such as isotropic phase symmetry [12]
and texture descriptor [13], were proposed for detection of
beta cells, lymphocytes or glandular structure. Afterwards,
researchers utilized machine learning methods, like Bayesian
classifier [14] and Support Vector Machine (SVM) [15] to
detect or segment nuclei. These kinds of hand-crafted methods
were also applied in a wide range of other digital histopatho-
logical applications, such as level set for tubule segmentation
in breast cancer [16], [17] and SVM for gland detection in
prostate cancer [18], etc. However, hand-crafted features are
limited in representation capability to solve such complex
problems.

Recently, with the advance of computing power, deep learn-
ing methods have achieved remarkable success in many fields,
including image classification [19]–[21], semantic segmenta-
tion [22]–[25], object detection [26], and natural language
processing [27], etc. In the field of histology, Kumar et al. [28]
released a dataset with ROIs extracted from whole-slide
images and proposed boundary aware CNNs for nuclei seg-
mentation. Xu et al. [29] proposed stacked sparse autoencoders
(SSAE) with unsupervised pre-training for nuclei detection
from breast cancer histopathological images. Su et al. [30]
used deep CNNs as pixel classifiers for breast cancer region
segmentation in histopathological images. Cireşan et al. [31]
proposed a deep neural network for mitosis detec-
tion and achieved the best performance in two grand
challenges [8], [32]. A deep cascaded framework was proposed
in [33] to fast retrieve the mitoses and suppress false positives
from breast cancer histology images. Xie et al. [34] proposed
a structured regression approach for robust cell detection using
convolutional neural network (CNN). A locality sensitive deep
learning method was developed for detection and classification
of nuclei in routine colon cancer histology images [35].
Chen et al. [36] and Sirinukunwattana et al. [37] exploited
a deep contour-aware network for gland and nuclei instance
segmentation from histopathological images, which signifi-
cantly outperformed other methods in two recent challenges.
A weakly supervised deep learning algorithm was developed to
segment cancerous regions from histopathology images [38].
Ronneberger et al. [23] proposed the U-net for neuronal struc-
ture segmentation from microscopy images, which achieved
good performance in a wide range of segmentation tasks.
However, these methods only focus on a small number of
pre-selected regions and therefore do not translate well to
pathological practice.

2) Whole-Slide Image Analysis: There were limited works
on WSI analysis in gigapixel until the appearance of high-
throughput scanners in recent years, which has become a
trend in the field of histopathological image analysis [39].
A series of challenges related to whole-slide image analysis
have been presented for a variety of classification, detec-
tion or segmentation tasks. In the Her2 challenge contest [40],
Qaiser et al. presented a benchmark for comparing the perfor-
mance of automated algorithms for scoring of Her2 from dig-
itized WSIs of invasive breast carcinoma, which demonstrated
the enormous potential of automated algorithms in assisting
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the pathologists with objective immunohistochemistry (IHC)
scoring. In the challenge on cancer metastasis detection
in lymph node (Camelyon16)1 held in conjunction with
ISBI 2016 [3], Wang et al. [41] presented an ensem-
ble of two GoogLeNets, which achieved the best perfor-
mance on metastasis detection. Kong et al. [42] proposed
a spatially structured deep network containing appearance
and spatial dependency information for cancer metastasis
detection. In the breast histology image (BACH) classifi-
cation challenge, Aresta et al. [43] held the challenge to
find the best whole-slide level classifier for normal, benign,
in situ carcinoma and invasive carcinoma classification. he
breast tumor proliferation prediction (TUPAC16) challenge
was held to predict tumor proliferation from whole-slide
images [44]. Apart from the challenges, many works regard-
ing whole-slide image analysis have been proposed recently.
Graham et al. [45] classified whole-slide images of lung cancer
based on morphological features extracted from probability
maps produced by a patch-based ResNet32. Qaiser et al.
proposed a patch-based k-NN classifier for colorectal tumor
segmentation, with persistent homology profiles for exemplary
training sample selection [46]. However, the above frameworks
used patch-based classification for whole-slide image analysis,
which significantly increases the computational cost at the
highest resolution, and hence is suboptimal in real clinical
practice. Then, Xu et al. proposed a sparse kernel technique
to accelerate the pixel-wise predictions, which could alleviate
the efficiency problem to some extent [47]. However, pixel-
wise predictions cost much more time and computational
resources, which are not necessary in our underlying problem.
Therefore, how to efficiently process the image while ensuring
dense prediction is crucial for WSI analysis. A preliminary
version of our work was presented in [48], which proposed
a dense reconstruction method by leveraging the stitching
process. Although, it could accelerate the detection speed,
the time cost could be linearly increased with dense factors.
In this paper, we propose a novel layer, i.e., Anchor Layer,
which can equivalently remodel the offsetting based dense
reconstruction mechanism [48] into a fully convolutional way.
The proposed method can achieve more accurate results by
densely scanning whole sliding images while demonstrating
computational effectiveness by utilizing similar time cost.

C. Contributions

Aiming at tackling these challenges, we presented a new
mechanism for accelerating the inference speed dramatically
in this study while maintaining competitive accuracy. The main
contributions of this paper is summarized as follows:

• We propose a novel framework, referred to as Fast Scan-
Net, for histopathology image inference. By leveraging
the efficiency of the fully convolutional architecture to
meet the speed requirement for clinical practice, the pro-
posed Fast ScanNet is particularly fast in gigapixel level
WSI analysis, generating results hundred times faster than
patch-based frameworks by sharing the computations in
the overlapping regions [49].

12016 ISBI Camelyon challenge: https://camelyon16.grand-challenge.org/

Fig. 3. The merit of using the fully convolutional architecture. It can speed
up the inference by sharing computations in the overlapping regions.

• In order to further improve the performance, the idea of
model conversion is exploited to ensure dense scanning,
which makes the predictions more accurate on both
micro- and macro-metastases. With the proposed anchor
convolutional/pooling layers to remodel the offsetting
scanning in our previous work [48], Fast ScanNet can
improve the accuracy significantly by densely scanning
while adding little time cost, i.e., only 10% extra time
cost for 4 times dense predictions.

• Compared with the state-of-the-art methods [3] on the
benchmark dataset of Camelyon16, our method achieved
superior performance with a much faster speed of within
one minute in tumor localization task and even surpassed
human performance on both challenge tasks.

II. METHODOLOGY

A. Fast Prediction via Modified Fully Convolutional
Network (FCN)

Patch-based frameworks are widely used in object detec-
tions tasks. One of the advantages is that data augmentation
is very flexible when training a deep neural network. How-
ever, there exists a large amount of redundant computations
in the overlapping regions when a window scans densely,
as illustrated in Fig. 3, which results in dramatically increased
computational cost when applied to large-scale gigapixel
image analysis. In order to resolve this issue, we propose a
modified fully convolutional network that can take arbitrary
sized images as input for fast prediction, derived from the
mechanism of sharing computation proposed in [49], but it is
trained in a patch-based manner.

1) Modified FCN: Different from standard FCNs, our FCN
removes upsampling path which is a must for segmenta-
tion but not necessary for detection tasks [36]. Furthermore,
the upsampling path greatly slows down the detection process
when considering the large size of WSIs but does not provide
additional benefit to the quality of heat map for detection task,
as shown in Fig. 4 (a). The fully convolutional network without
the upsampling path can efficiently output a heat map with a
much smaller size than the input image. We further construct
a more powerful network with denser heat map as output by
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Fig. 4. (a) The different dense mechanism between our method and
standard FCN with interpolation upsampling. The patches and pixels in
black are the same as those in a standard FCN without dense model
conversion. Green, red and blue ones are the patches that are missed
by standard FCN. (b) The extension of input (the same goes for ROI)
with dense coefficient α = 4 before dense inference.

TABLE I
THE ARCHITECTURE OF OUR PROPOSED NETWORK

converting the existing model with proposed anchor layers,
which will be elaborated on in the next subsection.

Our FCN is designed based on VGG16 network [50] by
replacing the last three fully connected layers with fully
convolutional layers 1024 × 1024 × 2 (i.e., kernel size 1 × 1).
The padding operations are removed from our architecture to
avoid the boundary effect and preserve the inference equiv-
alence, as shown in the training phase of Table I. Based on
this modification, our FCN can enjoy the transferred features
learned from a large set of natural images [51], [52], which
demonstrated consistent improvements over that without trans-
fer learning. Note that the 2-D square sizes in this paper are
briefly denoted by their length of side, such as L for length and
S for stride. In the training phase, we employ patch samples
with size as L p = 244 randomly cropped from WSIs to train
the modified VGG16 model. In the inference phase as shown
in Table I, our FCN can take a large input, i.e., ROI with
size up to Lr = 2868 (determined by the memory capacity

of GPU) and output a heat map with size Lm = 83. The
proposed network inherently falls into the category of fully
convolutional architecture, which is equivalent to a patch-
based convolutional neural network with input size L p = 244
and scanning stride Sp = 32, but the inference speed is much
faster by removing the redundant computations of overlaps.

The relationship between the input size Lr and output size
Lm is denoted as follows,

Lr = L p + (Lm − 1) × Sp (1)

Here, we use the L p and Sp as patch size and scanning stride
of FCN to represent the input size and scanning stride of
equivalent patch-based model.

2) Effective Training Strategies: We further propose two
effective training strategies to enhance the learning process
of FCN.

a) Exhaustive sample augmentation: The samples from dif-
ferent classes are randomly fetched under certain probabilities
to avoid sample imbalance problem. They are augmented with
shift, rotation, flipping, scaling and color jittering on the fly
before they are batched for training. In addition, we implement
an asynchronous sample prefetching mechanism with multiple
processors to maximize the utilization rate of GPUs, which
can significant relieve the I/O bottleneck and accelerate the
training and inference procedure.

b) Hard negative mining: We trained our model in two
stages, i.e., general sample learning and hard negative sample
mining. In the first learning stage, the model was initialized
with VGG-16 model pre-trained from ImageNet and trained
on randomly extracted training samples. While there exists
lots of negative training samples from the WSIs, most of
them can be easily distinguished from the true metastases.
In the second learning stage, in order to enhance the dis-
criminative capability of our model, we add the false positive
samples, i.e., hard negative mining (HNM) examples, from
the previously trained classifier back to the training data.
This strategy makes the training process more effectively by
focusing on hard cases, which contributes to greatly boost the
recognition performance.

B. Fast and Dense ScanNet Inference With Anchor
Layers

Densely scanning stride is important for tiny target retrieval.
As Fig. 4 (a) shows, with a sparsely scanning stride, a frame-
work might potentially miss the patches that can generate more
accurate probabilities for tiny targets. Although such missing
probabilities can be fabricated by upsampling path in standard
FCN for an end-to-end result, it does not help to boost the
performance for a detection task.

Modified FCN is fast, but the drawback of the fully convo-
lutional architecture is that its scanning stride is determined by
its downsampling layers. For example, if FCN downsamples
the input by five 2 × 2 pooling layers, the scanning stride
of the FCN should be 25 = 32, i.e., this FCN is equivalent
to a patch-based CNN network with a scanning stride of 32.
Namely, the deeper network with the more downsampling
layers, the sparser heat map is generated. This drawback makes
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Fig. 5. Two methods of dense reconstruction. (a) ScanNet: Dense
reconstruction by feature detaching and stitching [48]. (b) Fast ScanNet:
dense reconstruction in convolutional version. The features in black
represent the features without dense reconstruction.

it difficult to balance the tradeoff between the depth of network
and the density of scanning.

Therefore, the key solution to an accurate and dense heat
map lies in how to compute the missing patches in the gap
of sliding window. For brevity, the samples are demonstrated
in 1-D case in the following paragraphs, which can be easily
generalized to 2-D or higher dimensions.

1) Anchor Layers: Fig. 5 (a) illustrates an intuitive solution
for dense prediction from our preliminary work of Scan-
Net [48]: detaching the overlapping features (input or output
of layers of a neural network), computing the missing patches
and reconstructing the dense feature by stitching the output
of pooling alternately. After feature reconstruction, the size of
output increase by 4 times from n to 4n. Here, we denote
the ratio of increment in a certain dimension as dense coeffi-
cient α. Namely, in a n-D case, the output will be enlarged αn

times. However, this solution is not optimal as the overlapping
regions of features still exist redundant computations.

In order to leverage the efficiency of the fully convolutional
architecture, we model the procedure of dense reconstruction
by a new pooling layer, i.e., anchor pooling layer. As shown
in Fig. 5 (b), we name the whole set of overlapping features
as union feature. In iteration 1, as inputs are overlapped
and shifted by 1 pixel, it is easy to compute a group of
pixels (black-1, green-1, red-1 and blue-1) from the inputs
respectively if we start from the position 0th to slide the kernel
four times with stride 1. Afterward, in iteration 2, the kernel
should jump back to the position 2nd for the black-2 which is
the second pixel that should be pooled from the black feature.
Here, we denote this jumping location as anchor. It is easily
understood that the anchor moves forward 2 units iteratively,
which is equal to the stride of original standard pooling layer.

For generalization, we propose the anchor convolutional
layer (denoted as AnchConv) and anchor pooling layer
(denoted as AnchPool) for the basis of our model conversion,

Fig. 6. A simple instance of anchor layer on 1-D case. It takes an
1-D feature as input, with a dense feature as output, the combination
of the grouped feature pixels generated from all the iterations. The
anchor stride and operating distance of instance are sized as 2 and 4;
The convolutional/pooling kernel is sized as 3 with dilation rate as 2
and stride as constant 1 (this stride is constant 1 for Fast ScanNet
because the feature pixels related to same group are neighbouring by 1
in all situations). Kernel operation is configured with operating distance
da = 4, which displays the sliding process of kernel in a certain iteration.
The jumping traces denote the movements of kernel from one iteration
to the next.

which helps to convert a sparse scanning framework to a dense
one. As illustrated in Fig. 6, the anchor layers are different
from standard convolutional/pooling layers in their settings of
anchor stride sa , operating distance da and dilation rate. The
standard convolutional/pooling kernel operates on the feature
from the beginning to the end continuously, but the kernel of
anchor layer will stop and jump from one anchor position to
the others once it finishes its operations in a certain distance.
We define the length of anchor movement in each iteration
as anchor stride, and call this certain distance as operation
distance. Dilation rate is the same concept proposed in [53] to
enlarge the receptive field of input, but in our model, we utilize
it to ensure the pixels can be fetched and computed by kernel
with certain intervals. Other parameters of anchor layers are
inherited from standard convolution/pooling layers such as the
kernel size and stride. To make it brief and understandable,
a simple instance of anchor layer with kernel size 3 and
dilation rate 2 is displayed on 1-D feature in Fig. 6. Here,
we denote the anchor positions as “anchor-1, anchor-2, . . . ,
anchor-i , etc.” for “iteration 1, iteration 2, . . . , iteration i ,
etc.”, which start at the 0th of the feature and move forward sa

after each iteration. In iteration i , the kernel starts operations
at the position of anchor-i = sa × (i − 1) and terminates in
distance da . Afterwards, the kernel will jump to the anchor-
(i + 1) for the next iteration.

2) Model Conversion: Taking the model proposed in
Section II-A for instance, we convert the VGG16 modified
FCN to Fast ScanNet for dense prediction. The conversion can
be concluded in two Phases. In Phase 1, the architecture of Fast
ScanNet is inherited from FCN without changes. In Phase 2,
all the standard convolutional/pooling layers of FCN should
be converted to the proposed anchor layers.
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Fig. 7. The model conversion by anchor layers. Phase 1: standard
convolutional/pooling operations on sparse features before Le is divisible
by pooling stride. Phase 2: AnchConv/AnchPool inference on dense
features after Le is indivisible by pooling stride. (Details of Phase 2 are
illustrated in Fig. 8).

To ensure the conversion easily understandable, we simplify
the illustration on 1-D case with configurations of dense
coefficient α = 4 and size as 244, as shown in the Fig. 7.
First of all, the input (the same goes for large input ROI)
should be cropped with an extra extension Le. This ensures
the input to be the union region of the existing and missing
patches covering all of the needed spatial information. The Le

is formulated as Le = (α − 1)× Sp/α, as shown in Fig. 4 (b).
The scanning stride of Fast ScanNet can be reduced from Sp

to S�
p = Sp/α. In our instance, i.e., the input are extended to

244+24 and the scanning becomes dense with scanning stride
reduced from 32 to 8.

At the beginning, without any changes, the inputs and
features (outputs of layers) can be normally computed by
standard convolutional/pooling layers of FCN, as is denoted
as Phase 1 (as shown in Fig. 7). However, when it comes to
Pool4, the operation fails in proceeding because it takes an
odder sized union feature as 20 + 3 for downsampling. The
standard layers are unable to continue the further calculations,
and hence we need an anchor layer to tackle this.

Then, the Pool4 should be replaced by AnchPool for feature
reconstruction. As illustrated in Fig. 8 (a), the union feature
consists of four overlapped features shifted by 1 and the stride

Fig. 8. The details of dense feature reconstruction and inference on
dense features in Phase 2. The green, red, and blue squares represent
the feature pixels from the missing patches. The black squares are the
feature pixels same with the pixels from original version without dense
prediction.

of original standard pooling layer is 2. The anchor stride sa

of AnchPool should be equal to the stride of original standard
pooling layer as 2 and dilation rate should be equal to the
dense coefficient α. Thus, we can reconstruct a dense feature
for further proceeding.

Afterward, all of the standard layers of FCN should be
converted to anchor layers, as they are no longer applicable to
the dense features after feature reconstruction. We denoted this
stage as Phase 2. From the Fig. 8 (b,c and d), it is observed that
the dense features are staggered, i.e., the original neighbouring
pixels (denoted in black) are separated by three missing ones
(denoted in green, red and blue). Thus, dilation configurations
should be employed as 4 (equal to dense coefficient α)
to ensure the neighbouring pixels can be fetched correctly.
Besides, the stride of anchor depends on the stride of original
layer and dense coefficient.

In summary, the workflow of model conversion can be
concluded as follow: first of all, the input should be extended
with Le = (α − 1) × Sp/α as union input. In Phase 1,
the layers of Fast ScanNet are inherited from the original
model without changes before the union features can be
normally calculated. Then, the standard convolutional/pooling
layer should be replaced with corresponding anchor layer for
feature reconstruction. The setting of operating distance da
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Fig. 9. The framework of whole-slide image processing. (a) The original
WSI. (b) The pre-processed WSI, in which the squares are the ROIs
selected from informative regions. (c) Whole-slide heat map, in which
the red and green squares are the heat maps corresponding to the red
and green denoted ROIs in the (b). (d) Final results of whole-slide heat
map after post-processing.

should be equal to the dense coefficient α to reconstruct dense
features. The setting of the anchor stride sa should be equal
to the original stride of standard convolutional/pooling layers.
In Phase 2, all the convolutional/pooling operations should
be replaced by AnchConv/AnchPool layers. The setting of
operating distance da and dilation rate should be equal to the
dense coefficient α to ensure the correct input fetching. The
anchor stride should be formulated as sa = so × α, where so

is the original stride of standard convolution/pooling layers.
From the simple 1-D case in Fig. 7, the size of the heat

map increases from 1 to 4. It should be noted that the Fast
ScanNet can leverage the efficiency of the fully convolutional
architecture in the all phases (including reconstruction and
Phase 2) when fed with large sized inputs. We transform
Fast ScanNet from the FCN with 2-D input (ROI) size as
Lr = 2868, with the dense coefficient α = 2. The input
(ROI) of Fast ScanNet should be extended to L �

r = 2884 with
Le = 16 for dense inference accordingly. Finally, a 22 times
denser heat map will be generated with size 166 compare to
the original size 83

C. Whole-Slide Image Processing

Fig. 9 illustrates the pipeline for metastatic breast cancer
detection from WSIs. We first employ a simple and effective
OTSU method [54] for pre-processing to remove the non-
informative regions of input WSI. Then we feed pre-processed
ROIs into the Fast ScanNet to obtain the dense heat maps
before they are stitched together for a whole-slide heat map
(WSM). Finally, we post-process the image by morphology
opening operations to remove the small outliers.

We crop the ROIs with extended size as L �
r = 2884 for

ScanNet (with α = 2, patch size L p = 244 and scanning
stride S�

p = Sp/α = 16; equivalent to patch-based CNN
with scanning stride S�

p = 16). The size of dense heat
map in this configuration is L �

m = 166 (following rules in
Eq.(1)). If the dense heat maps are stitched non-overlapping
but conterminous, the inference on WSI level will be most
efficient. To satisfy this point, the ROIs should be fetched
under a certain interval Sr = 2656, denoted as ROI stride.
The rules for ROI fetching are summarised as follows:

Sr = S�
p × L �

m (2)

TABLE II
THE DETAILS OF CAMELYON16 DATASET

The coordinates between the original WSI and WSM can
be transformed by following:

HI = HM × S�
p (3)

where HI is the index of original WSI space, HM is the index
of WSM space.

The final results for 2016 Camelyon Grand Challenge
benchmarks are extracted from the WSM. For the localization
task, each connected component in the binarized probability
map (threshold was set as 0.5 emperically in our experiments)
was considered as a detection, with score equal to the maxi-
mum probability within the region. For the WSI classification
task, the prediction was simply computed as the maximal score
within the slide without any sophisticated post-processing
procedures.

III. EXPERIMENTS AND RESULTS

A. The Dataset

To evaluate our method, we used the dataset supplied as
part of the Camelyon16 challenge in conjunction with ISBI
2016 [3], [55]. The overall aim of the challenge is to detect
lymph node metastases in hematoxylin and eosin (H&E)
stained whole-slide images of lymph node sections. This task
is of high importance because micro-metastases are often
missed and therefore WSIs may be falsely classified. Specifi-
cally, the two tasks of the challenge were to localize the tumor
region and to perform whole-slide image classification. The
Camelyon16 challenge dataset contains a total of 400 WSIs in
TIF format that were collected from two independent centers:
(i) Radboud University Medical Centre (Radboud UMC) and
(ii) The University Medical Centre Utrecht (Utrecht UMC).
The slides were acquired by 2 different scanners. Radboud
UMC images were produced using a digital slide scanner
(Pannoramic 250 Flash II; 3D Histach) with a 20x objective
lens (level-0 pixel size, 0.243μm × 0.243μm). Utrecht UMC
images were scanned by a digital slide scanner (NanoZoomer-
XR Digital slide scanner C12000-01; Hamamatsu Photonics)
with a 40x objective lens (level-0 pixel size, 0.226μm ×
0.226μm). The dataset contains 160 WSIs that contain metas-
tases and 110 normal WSIs. 40 abnormal and 28 normal WSIs
were reserved as validation dataset to determine the hyper-
parameters in post-processing including heat map threshold
and morphological kernel size. The organizers held out 130
images for performance evaluation. Further details of the
dataset can be seen in Table II.

B. Implementation Details

Our framework was implemented utilizing TensorFlow
library on the workstation equipped with eight Geforce
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Fig. 10. Typical examples of metastasis detection results from our pro-
posed method. Top: ground truth annotations from pathologists indicated
by the yellow lines. Bottom: Our detection probability results overlaid on
the original images with different colors.

GTX TITAN X GPU cards, Dual Inter Xeon(R) E5-2623 v4@
2.60GHz CPUs, 512GB ECC Memory and 7TB SSD.

C. Evaluation Metrics

For performance evaluation, the Camelyon16 challenge
employs two metrics to assess tumor region localization and
WSI classification. For the task of tumor localization, the Free
Response Operating Characteristic (FROC) curve [56] is used
to determine the performance. The FROC curve is defined
as the plot of sensitivity versus the average number of false-
positives per image under different truncation of probability
values. Specifically, the FROC score is defined as the average
sensitivity at 6 predefined false positive rates: 0.25, 0.5, 1,
2, 4 and 8 false positives. For the task of WSI classification,
the receiver operating curve (ROC) denotes the true positive
rate versus false positive rate of image classification under
different truncation of probability values. The area under the
receiver operating curve [57], [58] is used for performance
evaluation. This is also defined as the AUC score.

D. Qualitative Evaluation

To highlight the superior performance of our algorithm,
we show some typical results of our framework in Fig. 10.
Here, we can see a strong agreement between metastasis
detection as predicted by our method and annotations from
the experienced pathologists. We observe typical examples
of macro-metasases within the first and second column in
Fig. 10 with a diameter larger than 2mm. We can see that
the prediction of our proposed method on the bottom row
of Fig. 10 has excellent agreement with the ground truth
annotation on the top row of the same corresponding figure.
We observe examples of cases with micro-metastases and
isolated tumor cells (ITCs) with diameter smaller than 2mm in
the third and fourth column in Fig. 10. Note that the ITCs were
not considered for evaluation during this challenge. Similar to
images with macro-metastases, we observe a strong agreement
between the prediction of our method and the pathologist
annotation. Visually, it is clear that our method is able to
accurately detect both micro- and macro-metastases within
the whole-slide images. This is of great clinical significance
because the robustness of the algorithm to the size of the tumor

TABLE III
QUANTITATIVE COMPARISON WITH OTHER METHODS

reduces the likelihood that the algorithm will misdiagnose
cases with only a small tumorous region.

E. Quantitative Evaluation and Comparison

To quantify the performance of our algorithm, we evaluate
the method under various configurations. α is the parameter
that controls how dense the output of the prediction will
be. We set the value of α as 1 and 2 and name the cor-
responding networks “ScanNet-32” and “Fast ScanNet-16”,
respectively. We note from Table III that “Fast ScanNet-16”
achieves a superior result to “ScanNet-32”, particularly in
the tumor localization task, because the algorithm is able to
output a more dense prediction. This dense prediction is very
important when detecting micro-metastases and therefore also
contributes to a greater overall WSI classification performance.

Furthermore, we compared our method with several state-
of-the-art methods, submitted as part of the challenge in
Table III. We also show the FROC and ROC curves from
the different methods in Fig. 11. We can be confident in
the performance of our algorithm because there were many
submissions to the Camelyon16 challenge from various top
universities and companies. For the task of tumor localiza-
tion, our proposed method achieved the best performance
compared to all other methods, with the highest FROC score
of 0.8533 outperforming the runner-up team [41] by a signifi-
cantly large margin of 4.6%. This highlights the ability for our
method to accurately detect various sized metastases in breast
lymph node biosies. We also observe that the performance of
the proposed method surpassed the pathologist performance
of 0.7325 by more than 12%. As a result, our method not
only provides an objective method, but also generates more
accurate localization results. For the task of WSI classification,
the AUC score of the proposed method was 0.9875 when we
applied a simple post-processing technique on the tumor local-
ization probability map. Similarly, this score also surpassed the
pathologist performance of 0.9660 from the pathologists, and
also compares favorably to the leading method of 0.9935 [41].

F. Runtime Comparison

It is clear that our proposed method achieves excellent
performance in lymph node metastasis detection, but run-time
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Fig. 11. Evaluation results. Top: FROC curves of tumor localization task
of different methods. Bottom: ROC curves of WSI classification task of
different methods.

consideration is crucial if these methods are to be implemented
in clinical practice. In order to evaluate the efficiency, we com-
pared our Fast ScanNet with our previous work ScanNet by
using the stitching mechanism for dense reconstruction [48]
and several patch-based frameworks widely used by other
teams. The efficiency is evaluated by measuring the time cost
on a 2800 × 2800 sized ROI with scanning stride 32 and 16
(corresponding to dense coefficient α = 1 or 2) under the
setting of single GPU. From Table IV, comparing the time
consumptions of Fast ScanNet under configurations of α = 1
and 2, we observe that it only takes approximately 10% extra
time cost to obtain a four times denser heat map for Fast
ScanNet. In comparison with ScanNet when the stride is set as
16, the proposed Fast ScanNet can process images 3.65 times
faster and therefore is suitable when processing multi gigapixel
histology images, where timely diagnosis results are of crucial
importance. Compared with the patch-based VGG16 network,
the Fast ScanNet only takes 0.02 minutes to process the ROI
with stride 16, about 195 times faster than its patch-based
baseline. Actually, it amounts to predict 130 million patches in
one minute per GPU (one pixel in heat map corresponds to one
244×244 patch). In contrast to other patch-based frameworks,

TABLE IV
RUNTIME COMPARISON ON THE ROI (SIZE

2800 × 2800) (UNIT: MINUTE)

the advantage of our Fast ScanNet is significant, especially on
the densely scanning cases with stride as 16.

A typical WSI consists of 100 to 900 informative ROIs
(400 in average) with size 2800 ×2800, i.e., it generally takes
about one minute for our Fast ScanNet-16 to process a WSI
by using the workstation equipped with eight Geforce GTX
TITAN X GPU cards. The Fast ScanNet can be easily paral-
leled for acceleration if more GPU resources are available.

IV. DISCUSSION

Histopathological examination of tissue biopsies plays a
fundamental role in cancer diagnosis and survival analysis [4].
Despite the importance of this task, providing a diagnosis can
be extremely time-consuming because it is vital that patholo-
gists thoroughly examine each case to ensure an accurate diag-
nosis. There are good reasons to believe that digital pathology
with artificial intelligence for computer-aided diagnosis is a
remedy for this dilemma because it can not only reduce the
workload of the pathologists, but also give an objective and
potentially more accurate diagnosis.

However, there is limited literature on deep learning applied
to gigapixel whole-slide images before the Camelyon16 chal-
lenge. In the past, most methods performed image analysis
on pre-selected patches (size 500 × 500) manually chosen
by experts. When using computational methods to analyze
gigapixel whole-slide images, several challenges have to be
addressed: the huge variance of tissue pattern; the severe
sample imbalance of each class; and the demanding compu-
tational cost. The latter point is a major bottleneck and is
one of the reasons why many current algorithms cannot be
implemented in clinical practice. In this paper, we propose
a method that, not only achieves state-of-the-art performance
in lymph node metastasis detection, but also overcomes the
major speed bottleneck within whole-slide image processing.
Our framework can make fast predictions by leveraging the
efficiency of FCN, while it is trained in a patch-based way
for extensive augmentation. We propose the novel idea of
using anchor layers, which allows dense scanning with little
extra cost and achieves one hundred times acceleration in
comparison with other methods.

Although our method achieved competitive performance
in the underlying task, there are several directions that can
be explored to further improve results. First, more powerful
network architectures or sophisticated loss functions can be
utilized to enhance the discrimination of models, such as
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residual architecture [59], focal loss [60], etc. As well as this,
we can explore further ways to increase the computational
efficiency in our current method. A potential avenue would
involve reducing the amount of convolutional operations using
network pruning. In addition, in the whole-slide image classi-
fication task, the probabilities of image-level classification are
simply computed as the maximal score in the slide without
any sophisticated post-processing procedures, which might
limit its performance in the classification task. Therefore,
more sophisticated hand-crafted features derived from clini-
cal insight in combination with deep learned features might
potentially improve the performance on the classification task.

Deep learning for image analysis usually requires lots of
data with high-quality annotations. However, the exhaustive
pixel-wise annotation of WSIs is very laborious and time-
consuming (about 1-2 hours for a pathologist to annotate
one typical WSI), hence it is very difficult to acquire a very
large dataset with precise annotations. One interesting research
direction for whole-slide image analysis is how to make use of
weakly supervised information. For example, the WSIs with
rough annotations (i.e., some pixel-level boundaries are not
exactly accurate) or only image-level labels are often easily
accessible. Hence, exploring how we can capitalize on this
information using neural networks is a very interesting path
to follow within the field of histopathology image analysis.

V. CONCLUSIONS

In this paper, we present a novel framework that over-
comes the major speed bottleneck in whole-slide image
analysis, by leveraging fully convolutional networks for effi-
cient inference. The framework reconstructs dense heat maps
for ensuring accurate detection on both micro- and macro-
metastases. By incorporating asynchronous sample prefetching
and hard negative mining, the network can be trained with
quite good discriminative ability. We demonstrate that the
proposed method achieved superior performance compared to
other state-of-the-art methods on the Camelyon 2016 Grand
Challenge dataset and even surpassed human performance.
Furthermore, the proposed method matched the speed require-
ments of clinical practice, where the framework can process
whole-slide image within one minute. Future investigations
include evaluating our method on more histology WSIs and
integrating the framework into clinical practice. This may
require a large amount of data from multi-centers to improve
the generalization capability of the method.

REFERENCES

[1] GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Preva-
lence Worldwide in 2012, Int. Agency Res. Cancer, World Health Org.,
Geneva, Switzerland, 2012, vol. 2.

[2] S. B. Edge and C. C. Compton, “The american joint committee on
cancer: The 7th edition of the AJCC cancer staging manual and the
future of TNM,” Ann. Surgical Oncol., vol. 17, no. 6, pp. 1471–1474,
2010.

[3] B. E. Bejnordi et al., “Diagnostic assessment of deep learning algorithms
for detection of lymph node metastases in women with breast cancer,”
JAMA, vol. 318, no. 22, pp. 2199–2210, Dec. 2017.

[4] M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot,
and B. Yener, “Histopathological image analysis: A review,” IEEE Rev.
Biomed. Eng., vol. 2, pp. 147–171, 2009.

[5] G. Humphreys and A. Ghent, “World laments loss of pathology service,”
Bull. World Health Org., vol. 88, no. 8, pp. 564–565, 2010.

[6] M. T. McCann, J. A. Ozolek, C. A. Castro, B. Parvin, and
J. Kovacevic, “Automated histology analysis: Opportunities for signal
processing,” IEEE Signal Process. Mag., vol. 32, no. 1, pp. 78–87,
Jan. 2015.

[7] J. M. S. Prewitt and M. L. Mendelsohn, “The analysis of cell
images,” Ann. New York Acad. Sci., vol. 128, no. 3, pp. 1035–1053,
1966.

[8] M. Veta et al., “Assessment of algorithms for mitosis detection in
breast cancer histopathology images,” Med. Image Anal., vol. 20, no. 1,
pp. 237–248, 2015.

[9] E. Cosatto, M. Miller, H. P. Graf, and J. S. Meyer, “Grading nuclear
pleomorphism on histological micrographs,” in Proc. 19th Int. Conf.
Pattern Recognit., Dec. 2008, pp. 1–4.

[10] H. Fatakdawala et al., “Expectation–maximization-driven geodesic
active contour with overlap resolution (EMaGACOR): Application to
lymphocyte segmentation on breast cancer histopathology,” IEEE Trans.
Biomed. Eng., vol. 57, no. 7, pp. 1676–1689, Jul. 2010.

[11] X. Qi, F. Xing, D. J. Foran, and L. Yang, “Robust segmentation
of overlapping cells in histopathology specimens using parallel seed
detection and repulsive level set,” IEEE Trans. Biomed. Eng., vol. 59,
no. 3, pp. 754–765, Mar. 2012.

[12] M. Kuse, Y.-F. Wang, V. Kalasannavar, M. Khan, and N. Rajpoot,
“Local isotropic phase symmetry measure for detection of beta cells and
lymphocytes,” J. Pathol. Inform., vol. 2, Jan. 2012, doi: 10.4103/2153-
3539.92028.

[13] K. Sirinukunwattana, D. R. J. Snead, and N. M. Rajpoot, “A novel
texture descriptor for detection of glandular structures in colon his-
tology images,” Proc. SPIE, vol. 9420, p. 94200S, Mar. 2015, doi:
10.1117/12.2082010.

[14] C. Jung, C. Kim, S. W. Chae, and S. Oh, “Unsupervised segmentation of
overlapped nuclei using Bayesian classification,” IEEE Trans. Biomed.
Eng., vol. 57, no. 12, pp. 2825–2832, Dec. 2010.

[15] J. P. Vink, M. B. Van Leeuwen, C. H. M. van Deurzen, and
G. De Haan, “Efficient nucleus detector in histopathology images,”
J. Microsc., vol. 249, no. 2, pp. 124–135, 2012.

[16] J. Xu, A. Janowczyk, S. Chandran, and A. Madabhushi, “A weighted
mean shift, normalized cuts initialized color gradient based geo-
desic active contour model: Applications to histopathology image
segmentation,” Proc. SPIE, vol. 7623, p. 76230Y, Mar. 2010, doi:
10.1117/12.845602.

[17] A. Basavanhally et al., “Incorporating domain knowledge for tubule
detection in breast histopathology using O’Callaghan neighborhoods,”
Proc. SPIE, vol. 7963, p. 796310, Mar. 2011, doi: 10.1117/12.878092.

[18] A. Tabesh et al., “Multifeature prostate cancer diagnosis and Gleason
grading of histological images,” IEEE Trans. Med. Imag., vol. 26, no. 10,
pp. 1366–1378, Oct. 2007.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1097–1105.

[20] Z. Yu et al., “Melanoma recognition in dermoscopy images via aggre-
gated deep convolutional features,” IEEE Trans. Biomed. Eng., to be
published, doi: 10.1109/TBME.2018.2866166.

[21] Z. Yu et al., “A deep convolutional neural network-based framework
for automatic fetal facial standard plane recognition,” IEEE J. Biomed.
Health Inform., vol. 22, no. 3, pp. 874–885, May 2018.

[22] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 3431–3440, doi:
10.1109/CVPR.2015.7298965.

[23] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing
and Computer Assisted Intervention—MICCAI. New York, NY, USA:
Springer, 2015, pp. 234–241, doi: 10.1007/978-3-319-24574-4_28.

[24] Q. Dou, H. Chen, Y. Jin, L. Yu, J. Qin, and P.-A. Heng, “3D deeply
supervised network for automatic liver segmentation from CT volumes,”
in Medical Image Computing and Computer Assisted Intervention—
MICCAI. New York, NY, USA: Springer, 2016, pp. 149–157, doi:
10.1007/978-3-319-46723-8_18.

[25] H. Li et al., “Dense deconvolutional network for skin lesion seg-
mentation,” IEEE J. Biomed. Health Inform., to be published, doi:
10.1109/JBHI.2018.2859898.

[26] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2015, pp. 91–99.

http://dx.doi.org/10.4103/2153-3539.92028
http://dx.doi.org/10.4103/2153-3539.92028
http://dx.doi.org/10.1117/12.2082010
http://dx.doi.org/10.1117/12.845602
http://dx.doi.org/10.1117/12.878092
http://dx.doi.org/10.1109/TBME.2018.2866166
http://dx.doi.org/10.1109/CVPR.2015.7298965
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-46723-8_18
http://dx.doi.org/10.1109/JBHI.2018.2859898


1958 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 38, NO. 8, AUGUST 2019

[27] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[28] N. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, and
A. Sethi, “A dataset and a technique for generalized nuclear segmen-
tation for computational pathology,” IEEE Trans. Med. Imag., vol. 36,
no. 7, pp. 1550–1560, Jul. 2017.

[29] J. Xu et al., “Stacked sparse autoencoder (SSAE) for nuclei detection on
breast cancer histopathology images,” IEEE Trans. Med. Imag., vol. 35,
no. 1, pp. 119–130, Jan. 2016.

[30] H. Su, F. Liu, Y. Xie, F. Xing, S. Meyyappan, and L. Yang, “Region
segmentation in histopathological breast cancer images using deep
convolutional neural network,” in Proc. IEEE 12th Int. Symp. Biomed.
Imag. (ISBI), Apr. 2015, pp. 55–58.
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